Health, Safety & Environmental (HSE) Management In Engineering Practice

Health, Safety and Environmental management should be part of the engineering profession in a country for the purpose of
o duty of care
o economic reasons and
o legal reasons.

HSE management should therefore consider five broad phases:
* Specifications
* Design and implementation
* Installation and commissioning
* Operation and maintenance
* Changes after commissioning.
* Compliance with the standards requires four essential elements:
* Identification of safety functions required for the safe shutdown
* Assignment of a safety integrity level (SIL) for each safety function
* Use of the safety lifecycle for the engineering design and
* Verification of the SIL achieved for each safety function.

The engineering code of practice takes into consideration the following:
* Public safety: Giving priority to the safety and well-being of the community and having regard to this principle in assessing obligations to the clients, employers and colleagues.
* Risk Management: Taking reasonable steps to minimize the risk of loss of lives, injuries or suffering.
* Workplace and construction site: Minimizing potential dangers involved in the construction and manufacture of engineering products and processes.
* Public/Community well-being
* Communication
* Conflicts of interest
* Confidentiality

The privilege of practicing engineering is entrusted to those qualified and who have the responsibility for applying engineering skills, scientific knowledge and ingenuity for the advancement of human welfare and quality of life. Fundamental principles of conduct of engineers include truth, honesty and trustworthiness in their service to the society, honourable and ethical practice showing fairness, courtesy and good faith towards clients, colleagues and others. Engineers take societal, cultural, economic, environmental and safety aspects into consideration and strive for the efficient use of the world's resources to meet long term human needs.

Safety is a concern in virtually all engineering design processes. Engineers should understand safety in the context of engineering design and what it means to say that a design is safe against human injuries.

Current design methods prioritize economic considerations over environmental ones. In some cases, economic considerations also serve environmental goals. For instance, the minimization of materials used in a structure means resources are saved. If they are saved at the expense of the length of the operating life of a product, then, economic considerations conflict with environmental interests which demand that products be made as durable as possible because of the need to minimize resource usage and waste generation in the long term.

Safety is the antonym of risk. So, a design is safe to the extent that it reduces risk. Safe design aims at minimizing risk in the standard sense of this term.

A safe design is the combination of all those procedures and principles that are used by engineers to make designed objects safe against accidents leading to human death or injuries, long term health effects, damage to the environment or malfunctioning in general.

Several design strategies used to achieve safety in operations of potentially dangerous technology are:
* inherently safe design
* safety factors
* negative feedback (self-shutdown) and
* multiple independent safety barriers.

Probabilistic Risk Assessment (PRA) is the most common method of assessing safety but safe designs are used to reduce risks in the standard (probabilistic) sense but is inadequate. Safe design strategies are used to reduce estimated probabilities of injuries or reducing uncertainties not only risks. They are used to cope with hazards and eventualities that cannot be assigned meaningful probabilities.

There are four (4) main design principles in Engineering practice.

(a) Inherently safe design:
This minimizes the inherent dangers in the process as far as possible. Potential hazards are excluded rather than enclosed or coped with. For instance, dangerous substances are replaced by less dangerous ones and fire proof materials are used rather than inflammable ones.

(b) Safety Factors
Construction should be strong enough to resist load and disturbances exceeding those that are intended. A common way to obtain such safety reserves is to employ explicitly chosen numerical safety factors are employed. If a safety factor of two (2) is employed when building a bridge, then the bridge is calculated to resist twice the maximal load to which it will be exposed to in practice.

(c) Negative feedback mechanisms
This is introduced to achieve a self-shutdown in case of device failure or when the operator looses control. Examples are safety valves that let out steam when the pressure is too high in a steam boiler and the dead man's hole that stops the train when the driver falls asleep. One of the most important safety measures in the nuclear industry is to ensure that reactors close down automatically in critical situations.

(d) Multiple Independent Safety Barriers
Safety barriers are arranged in chains, so that each barrier is independent of its predecessors (if the first fails, the second is still intact). The first barriers prevent accidents; the second barriers limit the consequences of an accident and rescue services as the last resort.

Safety factors and multiple safety barriers deal with uncertainties as well as risks. But currently, Probabilistic Risk Analysis (PRA) is used but does not deal with uncertainties. Probabilistic calculations can support but will not supplant the Engineers' ethically responsible judgment (environment, health and safety culture).

Safety engineering principles also include education of operators, maintenance of equipment and installations and incidence reporting are examples of safety practices of general importance.

The Engineering profession is expected to be the harbinger of Health, Safety & Environmental management by virtue of the complexity of the output of the profession and their impacts on the lives of the general populace. How have we carried this along in our professional practices?

Seven (7) bad engineering practices have been identified:
* Believing that if something is not specifically stated, either "shall do" or "shall not do" in the standards, an engineer does not need to worry about it.
* Thinking that meeting the minimum requirements means the process is safe and complies with the standard.
* Ignoring the importance of good engineering practice.
* Designing systems that meet economic requirements but not safety protection requirements.
* Neglecting human factors (errors in calculations etc)
* Focusing on capital cost and not on lifecycle costs.
* Focusing only on the safety integrity level (SIL) and not on prevention.

Safety is an essential ethical requirement in engineering practice. Strategies for safe design are used not only to reduce estimated probabilities of injuries but also to cope with hazards and eventualities that cannot be assigned meaningful probabilities. Designers have an ethical responsibility to make constructions that are safe for future use. Safety is concerned with avoiding certain classes of events that are morally right to avoid.

In engineering design, safety consideration always includes safety against unintended human death or injuries that occur as a result of the unintended use of the designed object for:
* Prevention of damage to the environment
* Prevention of long term health effects

For example, if a bridge collapses, the engineers who designed it are held responsible.

Building designers and builders must obey construction safety in the use of Scaffolds, tool nets, tool boxes, mechanical lifts and manual lifts under safe procedures, use of personal protective equipments (PPEs) on sites (boots/helmets), clear passages and road-ways, construction tapes to cordon off work areas etc. Most engineers have neglected this aspect, thus, playing with the lives of the generality of the populace.

What engineers do have lasting influences on safety and define our level of Environment, Health and Safety culture.

Ethical obligations are necessary in order for engineers to carry out their profession. Without the obligation of confidentiality, clients could not trust engineers with commercially sensitive information. Without these information, engineers could not do their jobs. The moral obligations of our profession can be understood as duties which are necessary.

There are five (5) fundamental values necessary for the ethical obligations:
* Protection of lives and safeguarding of people.
* Professionalism, integrity and competence
* Commitment to community/public well-being
* Sustainable management and care for the environment
* Sustaining engineering knowledge

* Engineers shall hold paramount the Health, Safety and Environment/welfare of the public in the practice of their profession.
* Engineers shall practice only in their areas or field of competence, in a careful and diligent manner and in conformance with standards, laws, codes, rules and regulations applicable to engineering practice.
* Engineers shall examine the societal and environmental impact of their actions and projects, including the use and conservation of resources and energy in order to make informed recommendations and decisions..
* Engineers should declare their interests clearly.
* Engineers shall sign and take responsibility for all engineering works which they prepared or directly supervised. Engineers may sign works prepared by others only with their consent and after sufficient review and verification.
* Engineers shall act as faithful agents for their employers or clients and maintain confidentiality, avoid conflicts of interest whenever possible and disclose unavoidable conflicts.
* Engineers professional concerns must be made known to the client and the consequences of engineering decisions or judgments.
* Engineers should reject any public works, engineering decisions or practice that endanger the HSE of the public.
* Engineers shall commit to life-long learning, strive to advance the body of engineering knowledge and should encourage other engineers to do likewise.
* Engineers shall promote responsibility, commitment and ethics both in the education and practice phases of engineering. They should enhance society's awareness of engineer's responsibilities to the public and encourage the communication of these principles of ethical conduct among engineers.

This is about the long term survival of humanity. It recognizes that decisions made today must enable both those in the present as well as people of the foreseeable future to make effective choices about their quality of life.

Failure to identify risks to safety and the inability to address or control these risks can result in massive costs, both human and economic. The multidisciplinary nature of safety engineering means that a very broad array of professionals are actively involved in accident prevention or safety engineering.

A critical fault endangers or few people. A catastrophic fault endangers, harms or kills a significant number of people. Engineer's errors or inability to incorporate the HSE management in his practice spells catastrophic.

Everyone must strengthen his or her understanding of HSE awareness by making safety a priority. Also, cost effective solutions in order to gain the biggest return on investment should be developed.

Engineers take early design of a system, analyze it to find what faults can occur and then propose safety requirements in design specifications upfront and changes to existing systems to make the system safer.

If significant safety problems are discovered late in the design process, correcting them can e very expensive. This type of error has the potential to waste large sums of money.

* At all times, take all reasonable care to ensure that your work and the consequences of your work cause no unacceptable risk to safety.
* Take all reasonable steps to make your management/client and those to whom they have a duty of care aware of the risks you identify.
* Make anyone overruling or neglecting your professional advice formally aware of the consequent risks.
* It is critical for engineers to maintain a deep and broad understanding of the many technical and professional practice issues that they will inevitably encounter in their role as employees of public owners. This is achieved through appropriate education, training, experience, license, professional engineering practice and continuing professional development.

The engineering practice like the construction industry is the agent of social and economic development, the barometer of economic activities and a very large employer of labour in Nigeria. It accounts for over 60% of the total capital investment. It is the largest employer of labour (think of all the electrical, mechanical, civil, chemical and computer jobs in industries).

Health, Safety and environment, which is concerned with life and property must be taken serious in this profession. Safety procedures are necessary to prevent accidents, diseases and harmful effects on the health of the public at large arising from the activities in the industry on site and its environs or off site.

Good HSE management is visible in a country through the quality of the professional ethics of the professionals, engineers inclusive and the level of her health values and the state of her environment, that is, her level of cleanliness (personal hygiene and public sanitation).

It can only be developed through personal commitment, willingness and self-sacrifice because of the long and short run benefits therein. HSE management habit starts with safety consciousness. Safety consciousness dwells with each and every one of us and should be taken along to our professional practices.

People should recognize that their health and well-being are related to the quality of their environment and should apply thoughtful principles to attempt to improve the quality of their environment.

As Engineers, we should lead others in being safety conscious at all times and refraining from doing anything that may result to accident. We should apply safety measures to all our daily activities and take our safety and that of others around us as our responsibilities especially in our practices.

Finally, as Engineers we should pursue sustainable Health, Safety & environmental management and make it part and parcel of our engineering practice today for the continued relevance of our profession tomorrow. It is only when this is done that our professional ethics will be meaningful knowing fully well that the products of our professional practices have great impact on the lives of the entire citizens of this country.

Health, Safety & Environmental management habit is therefore not only necessary and but remains a vital ingredient of our professional ethics in engineering practice in Nigeria and elsewhere and this must be sustained always by all.

No comments:

Post a Comment